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Abstract

We study Hilbert space aspects of explicit eigenfunctions for analytic difference
operators that arise in the context of relativistic two-particle Calogero-Moser systems.
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curs. It is proved that the eigenfunction transforms are isometric, provided a certain
dimensionless parameter a varies over a bounded interval (0, amax), whereas isometry
is shown to be violated for generic a larger than amax. The anomaly is encoded in an
explicit finite-rank operator, whose rank increases to oo as a goes to co.
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§1. Introduction

The M-particle relativistic Calogero-Moser system inv olves the commutmg
analytic difference operators

(L1)  Sik= Z Hfzp Ty — ;) exp (?l—z&)

Ic{1... M} i€l ler
U=k J¢I

Hf:l: (zi—zj), k=1,...,M,

i€l
JE€I

where the ‘potential functions’ fi(x) are given by
(1.2) fe(z) = (o(z £ ig/me)/o(2))"/?,

with o(z) the Weierstrass o-function. Specifically, the time and space transla-
tion generators are the Hamiltonian and total momentum operator

H.q Em62(51 + 5—1)1
(1.4) Pra =me(S1 = 5-1),

which together with the boost generator

(L.5) =-m) z,

give rise to a representation of the Lie algebra of the Poincaré group,

(1.6) [Hyet, Pet] =0,  [Hrel, B = ihPrel,  [Pret, B] = ihHper /2.
The nonrelativistic limit ¢ — co yields

(1.7) Heel = Mmc? + Hy 4+ O(c™2),

where Hy, is the nonrelativistic Calogero-Moser Hamiltonian,

Y ez — ),

1<j<k<M

(1.8) H, = ——232
with p(z) the Weierstrass p-function. Moreover, one readily verifies

M
R
(1.9) Peoi=Pu+0(c™), Pu==) 0
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Obviously, the resulting Galilei group Lie algebra representation
(110) [Hnrv Pnr] =0, [Hnn B] = ihPy,, [Pnrv B] = thMm,

is satisfied when p(z) is replaced by an arbitrary potential V(z). By contrast,
the replacement of the o-function in (1.2) by other functions would yield a
non-zero commutator for Hye and P when A > 2, precluding a relativistic
interpretation.

The integrable one-dimensional M-particle systems just described were
introduced at the classical level in a joint paper with H. Schneider [1] and at the
quantum level in our paper Ref. [2]. The main inspiration for arriving at these
systems came from the question whether a relativistic point particle dynamics
describing the solitons/antisolitons/breathers in the relativistic sine-Gordon
field theory exists. There is meanwhile considerable evidence that this problem
can be solved via the above hyperbolic systems (obtained by specializing o to
sinh), and the present paper yields in particular a further confirmation of this
scenario. }

Both the classical and the quantum relativistic systems have been en-
countered in various other contexts and have been studied from a great many
viewpoints. We refer to our lecture notes Ref. [3] for a detailed survey and
bibliographical information until 1995. More recent work includes for example
Refs. [4]-[44], from which further pertinent articles can be traced.

This paper may be viewed as a sequel to our recent paper [45], where we
studied eigenfunctions of the above (reduced) two-particle Hamiltonian with
hyperbolic interactions. In the latter paper we focused on properties of an
algebraic character. Here, we consider Hilbert space properties of the pertinent
eigenfunctions and operators for a subset of the parameter space allowed in
Ref. [45]. Apart from the repulsive parameter regime, we study a closely related
attractive regime, and an extra (Dirac type) regime that has no analog in the
nonrelativistic setting.

To begin with the latter setting, the repulsive and attractive Hamiltonians
can be taken to be ‘

1 & glg- h.)yg)
. H™ = — (-2 ¢ &I
(111) " 2m < Pl sh®(v)
1 & g(g- h)u2>
2 (nr) = — _h2__ —_— .
(1.12) He 2m ( dz? ch?(vz)

Thus they are related by the crossing substitution z — x + im/2v. Choosing
g € BN, one winds up with reflectionless eigenfunctions, and in this paper
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we restrict ourselves to the corresponding choice of coupling constants in the
relativistic framework.

Specifically, the three Hamiltonians are the analytic difference operators
(from now on abbreviated as AAQOs)

_ (shy(z —igB) 12 shu(z +ig8) S
(113)  Hr= ( shvzr > ing T shwz + (i = =),

_ (chw(z —igB)\ chv(z +igf3) ) 7 ‘
(1.14) H, = ( . ) - + (1 = —1),

_ [ chu(z —igB3) 1/2 chv(z + zg/3 1/2 L
(1.15) H. = ( o ) g (i — —1).

(Here and below, a formula of the form F(i)+(i — —i) stands for F(i)+F(~1).)
The parameters are restricted by

(1.16) nB=1/meve (0,00), g/hi=N+1€eN,
and T%,;, are the translation operators defined by
(1.17) (TaNz)=f(z-a), acl

Therefore, H, is again related to H, by taking z — z + ir/2v, whereas the
relation of H. to H, will be clarified later on.

The operators H,, H, and H, are formally self-adjoint on the Hilbert space
L%(R,dx). Aswill transpire below, this formal property is a poor guide. Indeed,
an important aspect of this paper is that it makes clear (by explicit examples)
that a general eigenfunction expansion theory for analytic difference operators
must cope with new phenomena not present for discrete difference and differen-
tial operators. To date, no such theory exists, in contrast to the Weyl-Kodaira-
Titchmarsh theory for the latter operator classes. (See, e.g., Refs. [46]-[51]
for accounts of WKT theory from various complementary viewpoints.) The
special cases studied here and in our related papers Refs. [52, 53] suggest that
one should first of all try and isolate some general criteria guaranteeing that a
well-behaved eigenfunction transform exists.

The key problem with eigenfunctions of AAOs such as (1.13)-(1.15) is
that they are highly non-unique. Indeed, they can be multiplied by arbitrary
functions with period iA3. This problem can be ignored for AAOs that can
be defined as self-adjoint Hilbert space operators by restricting attention to
eigenfunctions that are (in essence) polynomials—a property destroyed upon
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multiplication by a non-constant ihS-periodic function. But for the above hy-
perbolic AAOs this avenue is closed. (Their trigonometric versions, however,
can be handled in terms of Askey-Wilson polynomials.)

As it turns out, the infinite-dimensional eigenfunction space of the AAQs
H.,H, and H. can be reduced to a two-dimensional one by insisting on an
additional eigenfunction property for an AAO in their (formal) commutant.
For the g = (N + 1)h case considered in this paper this operator may be taken
to be the ‘free’ AAO

(1.18) A= ﬂfr/u+T—J—:in/V'
It is these joint eigenfunctions that can be used to associate to H,, H, and
H., as well as to A, bona fide self-adjoint Hilbert space operators. The latter
are denoted by the same symbols, but it should be stressed that the Hilbert
space operator A depends not only on the case at hand, but also on 5 and N.
This dependence shows up in the associated S-operator; the crux is that the
definition domain of A varies.

To describe these Hilbert space results in more detail, let us denote from
now on the even and odd subspaces of L?(R) by L (R) and L2 (R), resp. Then
we obtain self-adjoint operators on the following Hilbert spaces, provided the

dimensionless product parameter

(1.19) a = hfv € (0,)

is restricted as indicated:

(1.20) L2 (R, dx), ae€(0,7/N),  (H,),
(1.21) L*(R dz), ac€ (0,7/2N), (H,, H,).
To be specific, we obtain an isometric eigenfunction transform
(1.22) Fr_ + L% (R, dp) — L* (R, dx)

onto L2 (R, dr), conjugating H, and A to multiplication by 2chf3p and 2chmp/hv,
resp. Similarly, we obtain isometric eigenfunction transforms

(1.23) Fo : L*(R,dp) — L*(R,dz), s=ae,

conjugating A to multiplication by 2chmp/hv, and H, and H, to multiplication
by 2chfBp and 2shgp, resp. (Note H, and H, formally commute with parity,
whereas H, anticommutes.) The operator F, maps onto L*(R,dz), while the
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range of F, equals the orthocomplement of /V pairwise orthogonal bound states
with eigenvalues

(1.24) 2cos(ka), k=1,...,N, (H, — eigenvalues),

and corresponding parity (=)V~*.

At this point it should be emphasized once again that the domains and
actions of the self-adjoint Hilbert space operators we associate to the AAOs
H. H, H, and A are defined indirectly, via the isometries F, _,F, and F..
This is in sharp contrast to the situation for ordinary differential and discrete
difference operators, where one typically defines the operator at first as a sym-
metric operator on a dense subspace, and then studies eventual self-adjoint
extensions. The examples studied here and in our previous paper [52] strongly
suggest that the latter approach is not as fruitful and revealing in the AAO set-
ting. In particular, our results illustrate in a quite concrete way that the ‘free’
AAO A (1.18) can be defined as an essentially self-adjoint operator with the
natural (AAO) action on an infinite-dimensional family of dense subspaces,
whose pairwise intersection is the zero vector. (Cf. especially the paragraph
above Theorem 2.2.)

The above ‘constructive’ results are supplemented by a number of ‘de-
structive’ ones. In particular, we prove that in the repulsive case isometry
and self-adjointness break down on L3 (R,dx) for generic a € (0,00) and on
L2 (R, dz) for generic a outside (0,7/N). Similarly, these anomalies are shown
to arise in the attractive and extra cases for generic a in [7/2N, oc). The isom-
etry obstructions are encoded in finite-dimensional subspaces whose dimension
(generically) increases as a increases.

We proceed by detailing the pertinent eigenfunctions and some of their
features. As a preliminary, we introduce weight functions

-1

N
(1.25) we(y) = H 4sh(y + ija)sh(y — ija) ,
7=1
N -1
(1.26) we(y) = H 4ch(y +ija)ch(y — ija)
J=1

These functions can be used to conjugate the AAOs (1.13)-(1.15) to AAOs
with meromorphic coefficients. Specifically, one has

(127) B, = w,(ve) 2 Hyw,(vg)/? = D2 HING) o (i = —i)
shvz ihf ’
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h(vz + iNa)

(1.28) B, = we(vz)~YV2Hywe(vz)/? = c hor Tis + (1 — =),

h N
(129)  B. = we(va) V2 How.(vz)/? = ‘L(%%l—) s — (i = =),

as is readily checked. The same similarity transformations on A (1.18) yield

(1.30) B=(=)"(T% ) + T2 0)-

N

(To appreciate how the factor (—)" arises, take z — +00.)

The H,-eigenfunctions, s = r,a, e, are now given by

(1'31) FT'(V, B: :c,p) = ws(yx)l/QEr(V» 3; %P)‘ws(ﬁp)l/z,
(1.32) Fo(v, Bi2,p) = we(vz) 2 Eq (v, B; 2, p)ws(8p) /2,
(1.33) F.(v, B;z,p) = we(vz)/*Ec(v, 8; z, p)w.(Bp) /%,

where the entire Bg-eigenfunctions Eg, s = 7,a,e, are of the form

(1.34) E.(v, 8;z,p) = exp(izp/h) P (", ™P),
N
(1.35) PR (y.z)= Y ey NN
m.n=0

The numbers c'ny are Laurent polynomials in the phase

(1.36) q = exp(ia), a = hpv,

with coefficients in N after multiplication by (—=)™*"iV:

(1.37) o) = (__)m—l—n(_i)NqN(N-H)/‘Zcm Z q—2(11+~'~+lu)’

mn
~N<l <<l <N
lj¢{~N+m...m}

(1.38) Cm = > g~ 2kt hn)
1<k <<k <N

(Here, empty sums are defined to be 1; note c,, is in essence a g-binomial
coefficient, cf. Ref. [54].) Moreover,

(1.39) @ =(ymeln) - mon=0,...,N,

Cmn 7n?

(1.40) ) = (=)ym*tne™ - mon=0,...,N.

mn mn?



714 SinoN N. M. RUIJSENAARS

The connection of the functions E,,s = a,e, to the function E, readily
follows from (1.39) and (1.40), resp.: We have

, N P L
(1.41) E,(v,3;z,p) = (—l)A exp (5-}_1—1/-) E, (V,ﬂn”t + §;,P> )

(1.42)  E.(v,B:x,p)

The repulsive eigenfunctions were already detailed in Ref. [55] and studied in
Ref. [45]. (The dimensionless variable pair (z,p) and parameters a,,a—,g of
the latter reference correspond to (s,t) = (vx, 8p) and hBv, , g/h, resp., in the
present paper.)

The above eigenfunctions have some crucial symmetry properties, which
are equivalent to symmetries of the coefficients cﬁ,‘;)n Specifically, the repulsive
coefficients satisfy (cf. Section II in Ref. [45])

(r) _ =(r)
(143) CEnZz = C]\,/ -m.N—n CIV m.n?

(r)

cn m?

(1.44) clr)

mn

so that one has

(1.45) Gr(v,B:z,p) =G (v, 8, -z, -p) = G, (v, B; —z,p),
G=E,F, z,peR,

(1.46) G (v,3;z,p) = G,(B,v;p,x), G=E,F.

From (1.39) and (1.40) we then obtain corresponding symmetries of G, and
G, and in particular

(1.47) Ge(v.35x,p) = Ge(B,v;p,x), G=E,F.

The symmetries (1.46) and (1.47) are particularly striking and useful. Indeed,
from these self-duality relations important properties of the adjoint eigenfunc-
tion transforms will be immediate.

We continue by sketching the organization of this paper in some detail.
In Section 2 we work in a general framework that will be specialized to the
above three cases in Sections 3-5. The functional-analytic core of Section 2

(and of the paper) consists of Theorems 2.1-2.3, whose proofs are relegated to
Appendix A.
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In Section 2 we work with scaled (dimensionless) variables and make var-
ious assumptions that will be shown to be (generically) satisfied in each of the
three cases. Actually, we have tried to anticipate its application to a great
many special cases of the transforms associated with the generalized hyperge-
ometric function introduced in Ref. [3] (see also Ref. [56]). We will come back
to this elsewhere, as well as to the connection of the eigenfunction transforms
of Sections 3-5 with the generalized hypergeometric transforms.

Theorem 2.1 paves the way for establishing the isometry properties of
the eigenfunction transform. It reveals that an eventual isometry violation is
encoded in a non-zero residue operator. The theorem is established without
invoking any Hamiltonian. In fact, in Section 2 we need not and do not assume
that the transform kernel is an eigenfunction of a non-trivial AAO. It is, how-
ever, manifestly an eigenfunction of a ‘free’ AAO A; (2.18), generalizing the
AAO A (1.18).

In Theorem 2.2 we show that a non-zero residue operator entails that one
cannot interpret the AAQO A, as a self-adjoint Hilbert space operator (or even
a symmetric one), when the action of the latter is defined in the natural way
on (a dense subspace of) the range of the generalized eigenfunction transform
F (2.21). The proof applies with obvious changes to any other AAO for which
the kernel may be an (improper) eigenfunction with real eigenvalues. Thus
Theorem 2.2 will enable us to show that self-adjointness (generically) breaks
down for H,, H, and H, when a is outside the intervals (1.20) and (1.21), resp.

Assuming a vanishing residue operator, we study in Theorem 2.3 the
Hilbert space scattering theory associated with the self-adjoint dynamics A4;.
Though its action is formally free, the scattering is non-trivial. Just as for
Theorem 2.2, the proof of Theorem 2.3 applies to a vast class of dynamics,
containing in particular the ‘“interacting’ AAOs H,., H, and H2 for the relevant
specialization. (This is a manifestation of the invariance principle for the wave
operators [57].)

It will be clear from the assumptions in Section 2 that the adjoint F* of
the eigenfunction transform F can be handled along the same lines, using the
dual ‘free’ AAO A, (2.19) in the role of A; (2.18). We refrain from doing so as
regards Theorems 2.2 and 2.3, since we do not need their ‘dual counterparts’.
We do specify the analog of Theorem 2.1 for F*, however. (Since the repulsive
and extra regimes are self-dual, the latter result is needed only in the attractive
case.) .

The general theory developed in Section 2 enables us to reduce the case
analysis in Sections 3-5 to a study of the two pertinent residue operators R
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(2.32) and R; (2.58). Quite surprisingly, these are finite-rank for arbitrary
a € (0,00), and so we need only isolate pertinent linear algebra properties.
The algebraic results obtained in Ref. [45] will be crucial in this enterprise.

§2. The General Framework

As explained above, it is expedient to reduce the bulk of the analysis
associated with the above three concrete cases to results obtained in a more
general setting. To ease the notation, we use dimensionless variables (s,?)
instead of (z,p), and accordingly start from a function of the form

(2.1) E(s,t)=e*t/2P(e*e'), a € (0,00),
My M,

(2.2) P(y,2)= Z Z apy™ M2
k=01=0

where M;,M> € N and ay; € C. (This should be compared to (1.34) and
(1.35).)

To ensure non-triviality and a convenient normalization, we assume
(23) |a00| =1.

The symmetries (1.43) and their analogs for ) and '), are taken into account
by assuming
(2.4) AM, kM=l =0, o € {—=1,1},

(2.5) QgL = OaArf, —k1 = Qh My—L-

Note that (2.4) and (2.5) amount to

(2.6) E(-s,—t) = gE(s,t),

(2.7) E(s,t) = 0FE(~s,t) = E(s,~t), s,tER.
Obviously, E(s,t) is a joint eigenfunction of the AAO

(28) Bl = (—)Ml (T’z‘s'rr + Tsiw)v

with eigenvalue 2ch(wt/a), and of the dual AAO

(29) B2 = (_>A/[2(Tit7r + Tt 'i7r)3

with eigenvalue 2ch(ms/a). Here and below, we find it convenient to encode
dependence on the variables s and ¢ by using subscripts 1 and 2, resp.
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Next, we introduce the c-functions

M, Ma
(2.10) c1(s) = Zakoe(M‘_%)S, NOE Zaﬂlemh_zl)t.
k=0 1=0

Clearly, c;(z) is an entire function, which is in-periodic for M; even and ir-
antiperiodic for M; odd. Using (2.5) one infers

(2.11) ¢i(s) = oci(=s), T(t) =co(—t), s,t€ER,

and using also (2.3) one sees that ¢;(z) has M; zeros (counting multiplicity)
in the period strip Imz € [0,7). Moreover, from (2.1) and (2.2) one readily
deduces

(2.12) E(s,t) = eM2tc)(s)e'/% + O(exp[(Ma — 2)Ret]), Ret — oo,

where the bound is uniform for s and Imt¢ varying over compact subsets of C
and R, resp. Similarly, we have

(2.13) E(s,t) = eMey(£)e™* + O(exp[(M) — 2)Res]), Res — oc.

uniformly for ¢ in C-compacts and Im s in R-compacts.
We proceed by defining weight functions

(2.14) wi(s) = [oer(s)er(=s)] 7Y wa(t) = [ea(t)ea(—1)] 7

Thus, w;(z) is an im-periodic, meromorphic and even function with 2AJ; poles
(counting multiplicity) for which Im z € [0, 7). Throughout this section we as-

sume that these poles are non-real. Thus they occur at points p(lj ), e pE\J,)J im—
p(lj), R iﬂ—p(,tj,',l in the strip Im z € (0, ); by convention, the points pg) denote

the zeros of ¢;(—z) in this strip. Due to (2.11) and our non-reality assumption,
we have

(2.15) wj(z) € (0,00), VzeR, j=12
For later use we also note the asymptotics

(2.16) wj(z) = e~2Mjz L O(e=(PMiTIRe2)) © Rez — 00, j = 1.2,

where the bounds are uniform in Im z.
We continue by introducing the function

(2.17) F(s,t) = wy(s)/2E(s, t)wa(t)/>.
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As it stands, this function has a sign ambiguity. For real s and t we choose
positive square roots throughout, cf. (2.15). Conjugating the AAOs B; (2.8)
and B, (2.9) with the respective weight functions yields

(2.18) A =T5 + T2,

(2.19) Ay =T +TL,,.

We are now going to use F(s,t) as the (Schwartz) kernel of a bounded
operator F between Hilbert spaces

(2.20) Hy = L*(R,ds), Ha,= L3R, dt).

To be specific, let us denote the subspace of H; consisting of C"*-functions
whose support is compact and does not include the origin by C;,j = 1,2. Then
we begin by defining

o
(2.21) F:C—Hi, ¢(t) — (2ma)”1/? / F(s,t)o(t)dt.
bade o
Though it is clear from the above that the integral is absolutely convergent,
it is not immediate that F maps C» into H; and that F extends to a bounded
operator (denoted by the same symbol). It is not hard to see this, however, as
we now explain.
Consider first the special case M; = My = 0. Then one has

(2.22) o=1,a0 € {-1,1}, wi(z)=ws(z)=1 (M, My =0).

Hence F amounts to Fourier transformation, and so F extends to an isometry
from Hy onto H;. In the general case it is therefore clear that (F¢)(s) equals
the product of w;(s)!/? and an entire function of the form

M,
(2.23) > Mg, (s),  ils) € Ha,
k=0

cf. (2.1) and (2.2). From the bound (2.16) with j = 1 it then follows that we
do have F¢ € H; (recall wi(s) is even).

A slight elaboration on the previous paragraph now shows that F is bounded:
Its kernel can be written as

(2.24)
M; M,

F(s,t) = zzakl (w1(3)1/2e(M1—2k)s> ) (eim‘/a) ) (e(M2—2l)tw2(t)1/2) ’

k=0 1=0
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and each of the terms in the sum corresponds to the product of three bounded
operators.

At this point it is convenient to insert some observations on the adjoint F*
of F, which will be used later on. First, from the boundedness of F it follows
that F* is defined on all of H; and bounded as well. Second, one easily verifies
that its action is given by

(2.25) (F*)(t) = (2ma) /2 /oc F(s,t)¢(s)ds, 1 €Cy.

—C
Finally, in view of (2.7) we are free to use the equalities
(2.26) F(s,t) = 0F(—s,t) = F(s,—t).

In the following theorem we assume that all poles of w(s) are simple. The
theorem involves a residue function defined by

(2.27) R(t, 1) = %[ri.”E(pi.l), ~t)E(p\",t)
k=1
+"”1(\:QMIE(”" pk ,—t)E(ir — P;. ,t -
Here, r;\:” and rﬁ a1, denote the residues of wi (s) at the simple poles pg.l) and
iT — pf\.l), resp. Now wi(s) is im-periodic and even, so we have
(2.28) r == k=1, M
Combining this with (2.6) and (2.1), we deduce

My

(2.29) R(t.t)=> riVE@, -t E@,.t)
k=1

—exp(r(t - t')/a)E(p}), ) E(p”), —t')].
From this one reads off that R(¢,¢') is an entire function satisfying

(2.30) R(t,t) = 0.
Theorem 2.1.  Assuming wi(s) has solely simple poles, one has
31 Fervi=Gusa+: [ [ Fwew)
[1— exp(m(t — t')/a)] " R(t, " wa (t)/ 2wo (') /2 dtdt,

for all ¢, € Ca, with R(t,t') given by (2.29).



720 SinoON N. M. RUIJSENAARS

The proof of this theorem is relegated to Appendix A. Here we only point
out that the vanishing property (2.30) entails that the integral in (2.31) is
absolutely convergent and that in Sections 3-5 the assumption of simple poles
is satisfied for generic parameters.

Independently of the latter assumption, we may and will define a bounded
self-adjoint operator Ry by

(232) Ry, = F*F - 1.

We assume from now on that R, has finite rank L € N. In contrast to the
previous requirements we made (which can be readily met), this may seem a
rather ad hoc assumption. It is however satisfied for all of the special cases
studied below. (In fact, in the concrete settings of Sections 3-5, the definition
(2.32) yields a finite-rank operator Ry even when wi(s) has some real poles.)

In order to prepare the ground for later sections we assume once again
(until further notice) that wi(s) has ony simple poles. Then it follows from
(2.32) that the residue term on the rhs of (2.31) equals (¢, Rav))o. We now
consider two important special cases pertaining to the residue sum (2.29): In
the first /second case a single term in the sum yields a vanishing/rank-one con-
tribution to Rs, resp. (The first case is relevant in Sections 4 and 5, the second
one in Sections 3 and 4.)

First, choosing k € {1,..., M}, suppose that we have an identity

(2.33) exp(wt/?a)E(pg),t) = o} exp(—ﬂt/‘Za)E(p;,l).—t), op € {-1,1}.

Then the corresponding summand in (2.29) clearly vanishes. To be sure, in the
present general setting the parity property (2.33) seems very restrictive. Note
in particular that in view of (2.1) and (2.2) it is necessary (but by no means
sufficient) for (2.33) that pi,l) be of the form

(2.34) p) =ir/2+ijra, jy€Z
Second, suppose that E(p,(cl) ,t) itself has a definite parity:
(235) E(pil)v-t) =0-}~7E(p§gl)7t)1 Ok € {_1’1}

Due to (2.1) and (2.2) this implies not only

(2.36) py =ijea, i €N,
but also
(2.37) E(p),t) =exp[(My + ipl fa)tler (n))

+ O(exp|(Mz — 2 + ipi.l)/a)t]), t — 0.
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(Recall that cl(—p;,l)) = 0 by convention, so that ¢; (pf\.l)) # 0, cf. the paragraph
containing (2.14).) Combining (2.16) and (2.37) with (2.35), we deduce

(2.38) E(@\", t)wa(t)? € Ho.

Moreover, from (2.6), (2.7) and (2.36) we obtain

(2.39) E@M t)=cE(pl,t), teR

Therefore, the pertinent summand in (2.31) can be written as

(2.40) ia~ N oor(e, B(py) . wa () 2)a(E (). Jwa ()2, 0)a.

As a consequence, it gives rise to a rank-1 operator on Hs.

The two cases just considered are not the only way in which the residue
sum (2.29) can give rise to a finite-rank operator R, as assumed above. Indeed,
we will encounter other possibilities in later sections. But we need not and will
not analyze further cases for our remaining purposes in this general section. In
fact, for the remainder of this section we drop the assumption that w;(s) has
simple poles.

Reconsidering the operator equality (2.32)., we observe that the rank-L
assumption on Rs entails that R, has L non-zero eigenvalues belonging to
[-1.,0) or (0,00). Setting

(2;—11) Ro = RQ(HQ),

it is also clear from (2.32) that F is isometric on the orthocomplement Ry of
the L-dimensional range Rs.

With these Hilbert space properties at our disposal, we now study the
question whether F may be viewed as an eigenfunction transform for a self-
adjoint operator A; associated to the AAO (2.18). To analyze this, let us
first denote the operator of multiplication by 2ch(wt/a) on.Ha by Mo, and its
natural domain by D(M;). (That is, D(M3) is the maximal multiplication
domain, so that My is self-adjoint on D(M3).) Now there are two essentially
different cases: Either Ry = 0 or Ry # 0.

In the first case F is an isometry, so Ker(F)=0. Therefore, we may define
an operator A; on F(D(M3)) by requiring the intertwining relation

(2.42) Alfz .7:./\/[2.

Whenever F does not map Hs onto H;, this operator is not densely defined, but
A, is easily seen to be self-adjoint as an operator on (the subspace F(D(Mz))
of) the Hilbert space



722 SinvMON N, M. RUIISENAARS

(2.43) He = F(Ha).

In the second case F may have a non-zero kernel (cf. (2.32)), so there
might exist vectors ¢ satisfying

(2.44) ¢ € D(M2) NKer(F), Mao ¢ Ker(F).

Whenever such vectors exist, one is not entitled to use (2.42) to define A; on
F(D(Ms)). Now we cannot rule out the obstruction (2.44) in general. On the
other hand, when we restrict attention to the smaller (‘Paley-Wiener’) subspace

(2.45) Py = F(C),

then it can be shown that (2.42) does give rise to a well-defined operator A;;
stronger yet, one has C» NKer(F) = {0}.

We do not substantiate the latter claim here, since our proof is somewhat
involved and since we do not need this result here. Indeed, in the following
theorem we only assert that when Ry # 0 and A; can be defined by (2.42) on
P1, then the resulting operator is not symmetric.

At this point we would like to emphasize that the action of Ay on P;
given by (2.42) is the natural one associated with the AAO (2.18): Writing
(Fo)(s),¢ € Ca, as wi(s)*/? times an entire function q~‘>(s), (2.42) amounts to

(2.46) (A1F¢)(s) = wy(s — im)/2¢(s — in) + (i = —i),

as is readily seen from the definition (2.21) of F. It is also important to observe
that the intersection of two subspaces F(C2) corresponding to two distinct
weight functions w; consists of the zero vector whenever the square roots in
(2.46) give rise to branch points at distinct locations. (For example, whenever
there exists a point where one of the two weight functions has a simple pole,
whereas the other one has a finite value.)

Theorem 2.2.  Assuming Ry = 0, the operator A, defined on Py by
(2.42) is essentially self-adjoint (viewed as an operator acting in HS (2.43)).
Next, assume Ry # 0 and assume that ¢ € Co NKer(F) entails Mad € Ker(F).
Then the operator A, defined on Py by (2.42) is not symmetric.

The proof of this theorem can be found in Appendix A. In the remainder
of this section we assume Ry = 0. Thus F is an isometry, and the AAO A4,
(2.18) gives rise to a self-adjoint operator A; acting in the Hilbert space H,
‘which is unitarily equivalent to Mj via the intertwining relation (2.42).
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Next, we study the scattering theory associated to the operator A;. To
this end we extend A; to a self-adjoint operator on H; by defining A; to be
equal to an arbitrary self-adjoint operator on (H$)+. This extension only serves
to let exp(—iT A,),T € R, be a 1-parameter unitary group acting on all of Hi;
the following scattering theory objects are independent of the extension.

In the present context it is expedient to employ the two Hilbert space
scattering theory formalism, cf. Ref. [57]. As comparison operator between the
Hilbert spaces Hs and ‘H; we choose the map

X
(2.47) (J@)(s) = (27ra)_1/2/ et/ (t)dt.
-
Since J amounts to Fourier transformation, it vields an isometry from H, onto
Hi.
Clearly, J intertwines the parity operators

(2.48) (P2g)(t) = o(—t);  (Pry)(s) =¥(—s), 0€Ha ¥ EH)

When o equals 1, this is true for F as well, but more generally we have

(2.49) FPy = 0P\ F,
cf. (2.6) and (2.21). Introducing sign functions

o, t>0
2.5 =4 = oo
(2.50) o_(t) {1’ 1<g o+)=o00 (1),
we therefore obtain
(2.51) Fos(t)Py = PyFos(t), 6=+,—,

both for o = 1 and for o = —1.

As a last preliminary for the following theorem we recall that c»(t) does
not vanish for ¢ € R (by assumption, cf. the paragraph containing (2.14)).
Moreover, the number c3(0) is real in view of (2.11), so its sign is well defined.

Theorem 2.3.  The strong limits of the operator family
(2.52) exp(iTA;)J exp(—iTMaz), TEeER,
for T — +oo ezist and are equal to
(2.53) Wi = Fou(t)lea(Jt])/c2(=[t)] T ?sign(c2(0).

Here, the sign functions o+(t) are defined by (2.50), and the square-root signs
are chosen such that the resulting one-valued functions are continuous and equal
to1 fort=0.
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The proof of Theorem 2.3 is relegated to Appendix A. Just as in non-
relativistic time-independent scattering theory, one can obtain the S-matrix

ca([t])
c2(—[t])

directly from the eigenfunction F'(s,t). Indeed, from (2.17), (2.13), (2.16) and
(2.6) one infers

(2.54) Sy=WiW_ =0

[ca(t)/ca(—1)]*/? exp(ist/a), Res — co,

B Flee {0[02(—1‘)/02@)]1/2 explist/a), Res — ~oo.

Thus the right and left asymptotics are related via the unitary multiplication
operator (2.54). Of course, the latter asymptotics comparison holds true in-
dependently of Hilbert space properties. In particular, it fails to reveal that
there is no sensible wave packet picture of scattering (indeed, of time evolution)
whenever the residue operator Rs is non-zero.

The adjoint F* (2.25) can now be analyzed in the same way as F. However,
for later purposes we only need the counterparts of (2.31) and (2.29). (They will
be used in Section 4.) An inspection of the proof of Theorem 2.1 in Appendix A
readily yields the desired formulas: Provided ws(t) has only simple poles, one
gets

(2.56) (F ¢, F*¢)2 = (¢, )1 +%/wx/_xa(s)w(sl>
(1 —exp(n(s’ —s)/a)] " R (s, s )wi(s)?w () 2dsds’,

for all ¢,¢y € C;, with
(2.57) R(s,s') =Y r?[E(~s,p")E(s', p}>))

—exp(n(s' = 5)/a)B(s,p” ) B(=s', "))

(The extra factor o in the second term on the rhs of (2.56) as compared to
(2.31) arises from using the first equality in (2.7). Recall also (2.14) to see why
this factor does not occur in the first term.)

Introducing a second residue operator by setting

(2.58) Ry =FF" -1y,

it is straightforward to adapt the remainder of Section 2, with A, playing the
role of A;. We leave this to the interested reader, however.
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§3. The Repulsive Regime

Our starting point in this section is the function E,(r,p), given by (1.34)-
(1.38). (We suppress the parameter dependence whenever this does not give
rise to ambiguity.) It follows from Theorem II.1 in Ref. [45] that one has the
eigenvalue relation

(3.1) B, E.(x,p) = 2ch(3p) E;(z, p),
(cf. L.c. Eq. (2.12)), which entails
(3.2) H,F.(z,p) = 2ch(Bp) F)(x,p),

cf. (1.27). Moreover, from this theorem we also have

2N
(3.3) E.(£iNh3.p)= [] 2sinka,
hk=N+1
cf. Le. Eq. (2.16), and l.c. Eq. (2.18) yields
(3.4) E.(£i(N =D)a3.p) = BN (chdp), [=0....,N,

where B,( M) (1) is a polynomial of degree < ! and parity (—)! with real coeffi-
cients; the degree equals [ provided the a-restriction

(3.5) ka¢ 7N, k=1,....2N,
is satisfied. Finally, the polynomials obey the recurrence relation

(3.6) sin((2N — )a)BLY) (u) = sin(la) B{™] («) = 2usin(N - )a) B (u),
1=0....,N.

(This is simply the eigenvalue formula (3.1), evaluated for the r-values in (3.4),
cf. (1.27).)
Comparing (1.34) and (1.35) to (2.1) and (2.2), we see that the function

(3.7) E(s,t) = E.(s/v,t/3)
is of the form (2.1), with
(3.8) a=hBv, M,,M>=N,

and coeflicients
(3.9) an = cfy-
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In particular, this yields
(3.10) ag = (—1)NgNNFI2 g = gia

so that (2.3) is obeyed. Moreover, due to (1.43), the coefficients ay; satisfy
(2.4) and (2.5) with the parity parameter o equal to 1. Accordingly, E(s,t)
(3.7) fulfils (2.6) and (2.7) with ¢ = 1, and in addition

(3.11) E(s,t) = E(t,s),

since (1.44) entails ay; = agp.
Next, we note that (1.37) yields

(312) el = (=) S gk,

1Sk <<k SN

Thus the c-function ¢;(s) (2.10) is given by

N
(3.13) c(s) = Z C/f,’)%e(N-—Qm)s
m=0
N
= (-—i)‘\ q*'\ ([\'+1)/261\48 H(l _ q—le—‘Z.&')
k=1

]\r‘
= [J(=2i)sh(s + ika),
k=1

and by symmetry we have cs(t) = ¢1(¢). Recalling (2.14) and (1.25), we now
obtain weight functions
(3.14) wi(s) = wy(s), wa(t) = wy(t).
It follows from (1.31) and (3.14) that the function
(3.15) F(s,t) = F.(s/v,t/B),

is of the form (2.17). Obviously, the weight functions have simple and non-real
poles iff the a-restriction (3.5) holds true. This restriction is, in particular,
satisfied when

b
N+l

and we now assume (3.16) until further notice. Then we may and will choose

(3.16) a€(0,7/N), a# l=1,...,N,

(3.17) p) =ika, k=1,...,N, j=1,2.
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(Recall these numbers are by convention the zeros of ¢;(—z) for Imz € (0, 7)-)
Moreover, we infer that the assumptions of Theorem 2.1 are met.

From (3.4) and (3.7) we now read off that the second parity assumption
(2.35) is satisfied for k = 1,..., N, with o, = 1. (Note that the conclusion
(2.36) is in accord with (3.17).) Furthermore, these equations entail that the
Ho-functions (2.38) are given by

N —-1/2

(3.18) v ()= B (cht) | T] 4sh(t + ija)sh(t - ija) ,
j=1

l=0,...,N-1.

Therefore, we obtain an explicit expression for the residue operator Ry (2.32):
From (2.31), (2.29) and (2.40) we have

N-1

(3.19) Ry=-3"rx_w" () @y (1),
1=0

S

with residues given by (cf. (3.14) and (1.25))

(3.20) rm = [4isin(2ma) H 4sin(k 4+ m)asin(k — m)a]™?,
k#m
m=1,...,N.

In view of our standing assumption (3.16), the polynomial Bz( ™ has degree [,
and so Ry is a rank-NV operator.
The upshot is that the operator

(3.21) F i Ho— Hi, o)~ (2ma)™ /2 /oc F(s,t)é(t)dt,
(3.22) F(s,t) = wy(s)/* En(s /v, t/B)ws()"/?,

is isometric on Ry, but not on the N-dimensional subspace R2 (2.41). Now
it is clear from (3.19) and (3.18) that R2 belongs to the even subspace Hga 4.
Since the operator F intertwines the parity operators (recall (2.51)), it admits
restrictions

(3.23) Fs 2 Hos = His, O6=+4,—.

Thus, we are now in the position to deduce that the odd restriction F_ is an
isometry.
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It is not hard to see that F_ is actually onto. Indeed, this follows from an
inspection of the adjoint F*. It is given by (2.25). Now from the self-duality
relation (3.11) we infer

(3.24) F(s,t) = F(t,s),

so using (2.26) the adjoint kernel can be rewritten as
(3.25) F(s,t) = F(t,—s).

Hence we can repeat the above steps for F*, obtaining a residue operator

. N-1
! (r) ()
3.26 Ry = - -y T (8) @ (s),
( ) 1 QZNIH()Z‘J#[()
=0
cf. (3.19). This implies that the restriction F* to #H; _ is an isometry into
Ho _. Thus we have relations

(3.27) FrF_ =1n, . F-F =1y, .

and so bijectivity follows.
When we identify H; — and Hs _ in the obvious way with the Hilbert space

(3.28) _=L* (R, dy).

then F_ is a skew-adjoint operator with a purely imaginary kernel. Indeed,
using (3.25) we may write

x<

(3.29) (F-o)(y) = (SM)'W/ [Fy,y) -~ Fly',»)oly)dy’, oeH-,
and from this formula and (3.24) our assertion is plain. Since F_ is also a
unitary operator on H_, it now follows that we have

(3.30) F_=i(P; - P_),

where P, and P_ are complementary (orthogonal) projections on H_.

The above results were obtained with the a-restriction (3.16) in force. We
now summarize our isometry results and extend them to the excluded values
in (3.16) in the following theorem.

Theorem 3.1.  Foralla € (0,7/N) the odd restriction F_ (3.23) of the
operator F given by (3.21) and (3.22) ts an isometry onto H; . Viewed as an
operator on H_ (3.28), F_ may be written as (3.30), where the complementary
projections P, and P_ are strongly continuous in a for a € (0,7/N).
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Proof. We have already proved the first assertion for a satisfying (3.16).
To handle the excluded a-values, let us note first of all that for these values the
poles of the weight functions are no longer simple, but still non-real. There-
fore, the operator F (3.21) is a well-defined bounded operator for the excluded
values, too. Moreover, the factorization (2.24) entails that (3.21) gives rise to
a family of bounded operators F(a),a € (0,7/N), that is strongly continuous
in a. (Indeed, each of the three operator factors in (2.24) is strongly continuous
in a fora € (0.7/N), and the coefficients a;; are continuous in a for a € (0, oc).)

Recalling now the bijectivity relations (3.27), it follows that F_(a) is an
isometry onto H; _ for all @ € (0,7/N). Viewing F_(a),a € (0,7/N), as a
strongly continuous family of skew-adjoint unitaries on H_ (3.28), it follows
from well-known results (see e.g. Theorem VIII.24 in Ref. [58]) that the spec-
tral projections P.(a) and P_(a) on the eigenvalues { and —i are strongly
continuous as well. a

Let us now return to the physical variables x,p and parameters A, v, 3,
fixing a = hidv € (0,7/N). Then it follows from Theorem 3.1 that the operator

(3.31) Fo i L(R.dp) - LA(R.da),
o(p) — (2mh)~ / F.(v,3;:x,p)o(p)dp

has a restriction F, _ to the odd subspace L% (R, dp) that is an isometry onto

L? (R,dr). In view of the eigenvalue relation (3.2), the pull-back of the self-
adjoint multiplication operator ¢(p) — 2ch(3p)é(p) to L2 (R, dz) defines a self-
adjoint operator H, _ on L? (R,dr), whose action on functions F, _¢, with ¢
an odd Cj*-function (for example), coincides with that of the AAO H, (1.13).
Similarly, multiplication by 2ch(wp/Av) pulls back to a self-adjoint operator
A, _ on L? (R, dzx), whose action corresponds to the AAO A (1.18).

The wave and scattering operators associated with the commuting unitary
time evolutions exp(—iTH, _) and exp(—iTA, ) can now be read o»ff from
Theorem 2.3, cf. the remarks below the proof of Theorem 2.3 in Appendix A.
In particular, the S-matrix is explicitly given by

\ o T Sh(Blp] + ika)
(3.32) $-0) = GGy

cf. (2.54) and (3.13).
Let us next assume that a satisfies (3.16). Then it follows from the above
that on the even subspace L2+(R, dp) the operator F, 4 and its adjoint are not
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isometric. The isometry deviations are encoded in the rank-N operators R-
(3.19) and R; (3.26), multiplied by a and with ¢t — Fp and s — vz, resp.
For N > 1 the resulting obstruction to defining the AAO H, (1.13) as a self-
adjoint operator on Li(R, dr) (cf. Theorem 2.2 and the remarks made below
its proof in Appendix A) also shows up in a concrete and illuminating way for
the H,-eigenfunctions ¢\ (vz), as we now detail.

Fir§t, from (3.4) and self-duality we obtain
(3.33) E.(z,£i(N = 1)) = B (chwz), 1=0,...,N.
Hence (3.2) yields
(3.34) Hyo!(va) = 2cos((N = Da)o (vr), 1=0....,N - 1.

Now the functions yl'l( r) satisfy the same recurrence relation as the polynomials
BI(N), cf. (3.18). This recurrence is given by (3.6), whence we deduce

(3.35) ‘l;')gr)(l/l') = (‘os(Na)ch(V.r)z;‘"((,")(z/.l').

Moreover, from (3.3) and (3.18) we have

—1/2
2N N
3.36) o\ (vr) = 2sinka - 4sh(va + ija)sh(ve — ija
0
k=N+1 j=1

From these explicit formulas we read off that the H,-eigenfunctions
¥ (ve) and ! (vr) are either positive or negative for all z € R (depend-
ing on a € (0,7/N)). For N > 1 they both belong to L3 (R.dx), so it follows
that they are not orthogonal to each other. (We suspect this holds for all pairs
v (vr), vl (ve), 1 # m.) Yet, they have distinct real eigenvalues for the AAO
H,. (cf. (3.34)). Clearly, this state of affairs is by itself already an obstruction
to reinterpreting H, as a self-adjoint operator on L% (R, dx).

It remains to study the eigenfunction transform for the exceptional values
in (0,7/N) and for a > n/N. In order to do so, we employ again the variables
s and t. Also, we first concentrate on the N = 1 case, since the state of affairs
can be made fully explicit for this choice of N, and renders the general case
more accessible. (Cf. also our recent paper Ref. [53] for further information on
the N =1 case.)

Accordingly, we focus on the function

(3.37) E(S,f) — _iei..s-{./a(ei,u [es+f, + e-s—t] _ e—»'iu[es-t + e—s+t])’
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obtained from (3.7) and (1.34)-(1.38). Fixing first a € (0,7),a # 7/2, the
residue operator (3.19) reads

(3.38) Ry = %—)ws(t)lﬂ ® wy(t)/?, ws(t) = 1/4sh(t + ia)sh(t — ia),

where we used (3.20), (3.18) and (3.3). Now a routine calculation yields
(3.39) (Fw?)(s) = (r/2a)"?w,(s)'/?,

so R; has a non-zero eigenvalue w/2a — 1, cf. (2.32).

Turning to the exceptional value a = 7/2 (cf. (3.16)), we obtain Ry = 0,
by continuity in a. Thus F is an isometry onto L?(R,dz) for a = 7/2. This
can be easily understood from (3.37). Indeed, for a = 7 /2 it reduces to

(3.40) E(s,t) = 4e™**/%chscht, a=n/2,
whereas (3.14) and (1.25) entail

(3.41) wi(s) = 1/4ch®s,  wo(t) = 1/4ch?t, a=m/2.
Hence (3.22) yields

(3.42) F(s,t) ="t a=m/2,

so that F amounts to Fourier transformation.
Likewise we calculate

(3.43) E(s,t) =4ie***/%shssht, a=m,
(3.44) wy(s)=1/4sh®s, ws(t) = 1/4sh’t, a=rm,
(3.45) F(s,t)=ie""/%sign(s)sign(t), a = .

The double pole at the origin of the weight function entails w,(t)'/? ¢ L*(R, dt),
so that the rhs of (3.38) is ill defined. But from (3.45) it is plain that F
is an isometry onto L*(R,ds), so that Ro (2.32) vanishes for a = 7. (As a
consequence, the spectrum of Ry is discontinuous at a = 7.)

Choosing next a > m, we first dispose of the exceptional values a =
Ir/2,l = 3,4,..., cf. (3.5). For | odd, we obtain once more (3.40)-(3.42),
up to a sign for (I — 1)/2 odd. Similarly, for { even, we reobtain (3.43)-(3.45),
up to a sign for I/2 even. Thus F comes down to Fourier transformation for
all of the exceptional a-values.

Finally, we study the choice

(3.46) ac(nm(n+)n), a#(n+1/2)71, neN.
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Then the zero of ¢;(—=z) for Im z € (0,7) is given by i(a — nx). Using
(3.47) E(i(a — nn),t) = 2(—)" sin(2a) exp(nnt/a),
we now calculate from (2.29) and (3.20)

(3.48) R(t,t') = —isin(2a) exp[—nn(t — t')/a]
(1 —exp[(2n + V)w(t — t") /a]).

Substituting this in (2.31), we deduce that Ry (2.32) is the finite-rank operator

(3.49) Ry = %@ l;] f-1® fi,
(3.50) £i(t) = exp(lrt fa)wy(t)"/2.

(Note f; € Ha, since a > n1.)

From the explicit formula (3.49) we now read off that isometry of F breaks
down both on the even and on the odd subspace of H,. (Indeed, the restrictions
of Ry to Ha 4+ and Ha — are clearly rank-(n + 1) and rank-n operators, resp.)
Accordingly, for the a-values (3.46) we cannot associate self-adjoint operators
on L}(R,dr),§ = +,—, to the AAO H, (1.13) with g = 2h. (More precisely,
this cannot be done by exploiting the transforms we have available in this
paper.)

Having spelled out the special case N = 1, we supply less detail for the
general NV case. Consider first the excluded a-values in (3.16), corresponding
to the presence of double poles in the weight function w,(y) (1.25). It is by
no means obvious, but true that all of the double pole factors are matched by
similar factors in E(s,t). As a consequence, the function F(s,t) (3.22) reduces
to a function of the same type, but with a smaller value of N. Making the N-
and a-dependence explicit, this reduction can be specified as

™ s
. F ———— = - — A = .
(3.51) N(NH,s,t) ﬂ‘(szs’f)’ I=1,...,N

Thus F reduces to Fourier transformation for [ = 1, as we have already seen
for N =1, cf. (3.42). For [ > 1 we have a < w/2l, so that F_ is isometric and
Ry is a rank-({ — 1) operator.

The reduction just detailed can be easily derived from Eg. (2.100) in
Ref. [45]. In this connection we also point out that we have

(3.52) Fn(a;s,t) =iF(a,m, (N + Da; s, t),
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where the function on the rhs is defined in Section 3 of Ref. [45], cf. in particular
l.c. Eq. (3.41). (The above reduction may be viewed as a manifestation of the
(b = a4 +a_ —b)-symmetry of the function F(ay,a—,b;s,t), cf. l.c. Eq. (3.52).)

More generally, a similar decrease of N occurs for the excluded values in
(3.5). Specifically, assume that a is of the form

(3.53) =nl/k=ms/r, & N*,
ke{l,...,2N}, s,reN*, s, r coprime.

Then Theorem II.3 in Ref. [45] applies. It entails that all of the functions
Fy(ws/r;s,t), L € N*, reduce to one of the functions Fy,(ws/r;s,t), n €
{0,1,..., L, }, with

_Jr/2—1, r even,
(3:54) L= {T‘/2 —1/2,r odd.

For these n-values one has 2n < r, so that the restriction (3.5) with N — n is
fulfilled. (To be quite precise, the reduction holds true up to phases in {1, i}
and sign functions; cf. the above special case N = 1 to see what is involved.)

As a consequence, we are reduced to studying what happens for a > 7/N,
with the a-restriction (3.5) in effect. The zeros of ¢;(—=z) in the strip Imz €
(0, 7) are then given by

(3.55) pV =ika—ingw, k=1....,N,
with 0 < n; <--- <npy and ny > 0. Thus we obtain
(3.56) E(pil),t) = (=)™ exp(wnk,t/a)Bl(vN_)k(Cht).

From this we deduce just as in the N = 1 case that R is given by

ny

(3.57) .Zr Yo e R ).

k=1 l=—ny

(3.58) {(t) = exp(lnt/a)y) 4 (D).

It is not hard to see that the functions f,f,;')(t) give rise to linearly inde-
pendent vectors in the Hilbert space H,. Also. as a increases, the number n,
increases by one whenever a passes a number in N*7/k. Correspondingly, we
introduce

N
(3.59) kn(a) = Z card {n € N*|nmw < ka},
k=1
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where ‘card’ stands for ‘cardinality’. Then a moment’s thought shows that one
has

(3.60) rank(Ra+) = N + kn(a),
(3.61) rank(Ry —) = kn(a),

where Rj s denote the restrictions of Ry to Ha 5,0 = +, —.

Let us now summarize the above analysis. We have established that the
rafiks of the even and odd parts of Ry are increasing functions of a on the
subset of (0,00) defined by the a-restriction (3.5). Both ranks are generically
non-zero for a > /N, entailing violation of isometry and self-adjointness. For
the discrete set of critical a-values, the ranks jump down to integers of the form
I+ &i(a), ki(a), with { < N. In particular, when (N +1)a is a multiple of 7, one
readily verifies that [ = 0, and that F amounts to Fourier transformation. This
is in accordance with the Hamiltonian H,. (1.13) becoming formally ‘free’ when
gBv = (N + 1)a equals kr, k € N*. Observe, however, that the eigenfunction
transform F, (3.31) is not periodic in a, in contrast to the AAO H,.

8§4. The Attractive Regime

The operator B, (1.28) arises from B, (1.27) by the crossing substitution
r — x4+ ir/2v. Thus the eigenvalue equation (3.1) and the relation (1.41)
between E, and E, entail

(4.1) BoEq(z, p) = 2ch(Bp) Ea(x, p)-

From (1.32) and (1.28) we then deduce

(4.2) HoFy(z,p) = 2ch(Bp) Fu(z, p).
Next, we combine (3.3) and (3.4) with (1.41) to obtain

i

2N
4. ) =V _TP ink
(4.3) E, (21/ + LNhﬁ,p) i exp ( 2h1/) k—l;VIH 2sin ka,

mo. )
(4.4) E, (53 +i(N - l)hﬁ,p) =iVexp (-%) B;N)(Ch,@p), [=0,...,N.

From (1.41) and the self-duality relations (1.46) we also infer that B, has
eigenfunctions

(4.5) Eu(z,i(N = D) = (=i)'B™ (ishvz), 1=0,...,N,
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with eigenvalues 2 cos(N — l)a, cf. (4.1).
Just as in the repulsive case, the function

(4.6) E(<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>